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I. INTRODUCTION

Let v, <x,< ' <xy be N>1 given points of R. Then each of the
functions, s,(x)=|x—x, |* 1<k <N, is a twice continuously differentiable
piecewise cubic, ie., a cubic spline. They must, therefore, satisfy the stan-
dard spline continuity equations. The application of this simple observation
to each of the s, yields a remarkable factorization. Let F and T be the
N x N matrices given by F; =[x, —x;| and T, =|x, —x,|’; then

T'=FCF.

Here C is a near tridiagonal N x N matrix essentially expressing the C?
continuity of a cubic spline.

An easy consequence of this factorization is that T is positive definite on
a certain N — 2 dimensional subspace of R". See also [2] for more general
and related results. This latter fact will be used to show that T is non-
singular, thus showing that the set of translates, {|x—x, [}, is
“unisolvent”.

2. THe Cusic SPLINE CONTINUITY EQUATIONS

Although these equations are well known we present a derivation which
we believe to be novel and somewhat more economical than the standard.
This approach can also be extended to derive possible factorizations of
matrices of higher odd powers of point distances.
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Let s be a cubic spline and y,, v,, y, any three consecutive knots of s.
Then s” 1s continuous and piecewise linear on [1,, v4] with a possible
knot at x = y,. Now by the Hermite Gennochi formula, the second divided
difference of s at y,, v,, v; is given by

Al
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sy v l= JU J Sy = v ) Fuly, — v+ ) dude
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But s"(f(3«— v,)+uly, —v,)+ v,) is piccewise linear in (1. u) with knot
line given by

Hyy —vidbtuly, — v+, =1,
that is

yy—y)+u(y; —vi)=1.— v,
a straight line passing through the points (0, 1) and (s*,0) where * =

(32— ¥)/(yy = ). (See Fig. 1)
Now for any linear p(t, u) and A a triangle with vertices v, ¢, and v;.
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Thus, referring to Fig. 1,
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If we define h, = y, ., — v, 1 <i<2, this expression simplifies to

1

6h, + 1) Thys"(y)+2(hy +hy) s"(y)+ hys"(vs) )
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FIGURE 1

Now substitute the explicit expression for s[ y,, y,, v;] and simplify to
obtain

hys"(1)) s"(ya) | hys"(y3)
—_— / /’17 - .
7 % + (h, +h5) 5 + > 6
1 hy +h, 1
= ) —— = 7y — 5 V3 ) 2
o) s(yy T S(}_)Jrzh2 s(13) (2.2)

We emphasize that for any spline, s, these are just the conditions which
express the continuity of s”(x) at the interior knots {1, p. 11 ].

3. THE FACTORIZATION OF T

For simplicity we make use of the differences 4, & x,,, —x,,
1 <i< N—1. We apply the continuity equations (2.2) to each of the s.(x)
at the interior knots, x; 2<i<N-—1, and obtain the (N —2)x N matrix

equations

o) 1r :
1 hy . ;
? hl +}12 7 Q S/‘,(Xl)/()
hy h " )
—5'- hy + hy _2: Sx(x3)/6
h h
—2—3 hy +h, 7“
hy s hy_ "
L ~2 hy ot hn_ Nz IJ _Sk(xN)/é“
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_—1_ 7/11 +hz 1 —‘ ‘SA(XI)T
2h, 2hh, 2h, O
1 ;h:+hz _1_ ) (5]
2h, dhyhy o 2h, e
= 1
2h,
O |
¥ 1 My »+he_ 1

— seley)

| 2y, 2hy hy 5 2hy | - -

We “square up” these equations with the following two identities.

LEMMA 3.2. For x, <x,< - <xy and s(x)=|x—x, |" the following
hold:

sUxy) | xs =y sT(n) Xy —xg st (oy)

R S T S 6
SEAmREl () 4= (22) 4 = (vy)  (3.2)
= s(x —s(x e — 3.
2xy —x)xy —xy) I 2(x; —xy) : 2(xy —xy) :
and
Xy —X8(X) Xy —xy_ sTxy—1) SM(xy)
N 2 1 6 1 N 2 N i ’; + (x] . \ﬁ\ |) 6 N
! (x,)+ ! ( ) (3.3)
= §(x i |
2(xy — X)) 1 2xy —xy ) v
R —" ()

2xy ~ X )(-VN — Xy 1) A

Proof. 1t suffices to demonstrate (3.2); (3.3) will then follow by sym-

metry.
If k=1 1t is readily seen that both sides reduce to 0.5

1
1
(xy —x,)*} whereas for k=2 both sides equal 0.5(x, -x
vy —3x). |
We now add identity (3.2} as the first row of (3.1) and (3.3) as the last
and write S=h, +h, + - +h, ,, obtaining

N

(X, — )+
:)(\ + X+
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h S .-
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I<k<N. (34)

Denote the first matrix in (3.4) by C. The following lemma identifies the
second.
LemMa 3.6, The second matrix in (3.4) is the inverse of F.

Proof. This fact is verified by a straightforward calculation. We sup-
press the details. ||

If we now collect the N matrix times vector equations of (3.4) we obtain
the matrix equation

CF=F'T, (3.5)
and have proven:

THueOREM 3.7. T=FCF. |
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4. THE CONDITIONAL POSITIVE DEFINITENESS OF T

Since the diagonal is strictly dominant for the N -- 2 interior rows of the
matrix C, C is strictly positive definite on the subspace

Vi=laeRY u, =uy =0}
Clearly then T is strictly positive definite on the subspace V' =F '}

LEMMA 41 V=F "V'={aeR": ¥ ¢,=%"  a,x, =0}

Proof. Consider uc V" and let a=F 'u. Then

1
N ‘
Y a,=u’F '] |,
ld
i N
1
and
-
N _
e A .\‘)
Y ax,=u'F |
i1
L X,

But from the formula for F ' given in Lemma 3.6, it follows easily that
the N —2 interior components of both

1 X,

an I B
F . and F .

1 Xn

are zero. Since the first and last components of u are both zero the result
follows. §

We have therefore:

TueoreM 4.2 (cf. [2]). The matrix T is strictly positive definite on the
N — 2 dimensional subspace V= {aeR": >V  a,=%" a,x,=0}.
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5. THE INVERTIBILITY OF T
THEOREM S5.1.  The matrix T is non-singular.

Proof. The N =2 case is easily disposed of. By Theorem 4.2, T is strictly
positive definite on an N — 2 dimensional subspace. As T is symmetric, it is
readily seen that, counting multiplicities, 7" must have at least N — 2 strictly
positive eigenvalues. We claim that for N> 2, T has exactly N — 2 strictly
positive and two strictly negative eigenvalues. To see this consider 75, the
upper 3 x 3 block of 7. If we write

0 a b
Ty=|a 0 ¢,
b ¢ 0

we may compute trace(7;) =0 and det(75) = 2abc >0. Thus T; must have
two strictly negative eigenvalues and one strictly positive. Let £< R? be the
two dimensional eigenspace corresponding to the two negative eigenvalues.
Then for 0#xeE, x'T,x <0 and if we extend x to ye R" by zeroes we
have

y' Ty=x"T,x <0.

Thus T is strictly negative definite on a 2-dimensional subspace and must
have two strictly negative eigenvalues. The result follows. ||

6. REMARKS

We point out that the analogue of T in 2 dimensions need not be non-
singular. In fact, for the four points in the plane, ( —1, 0), (0, 0), (1, 0), and
(0, 1), the matrix of distances cubed is

o 1 8 22
1

1 0 1

8 1 0 2,2
221 2,2 0



88 BOS AND SALKAUSKAS

with determinant 64(1 —\/—2~)<0‘ But the matnix for the points, ( —1, 0),

(0,0), (1,0), and (2,0), is

0 1
1 0
g 1
27 8

8
1
0
1

27
8
1
0

with determinant 1188 > 0. There must, therefore, be points (i, v) when the
matrix for (—1,0), (0,0), (1,0), and (u, v) is singular.
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