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I. INTRODUCTION

Let .\ I < X 2 < .. , < X N be N> I given points of Ilt Then each of the
functions, .I'dx) = 1x - Xk 13 I ::::.:; k::::.:; N, is a twice continuously differentiable
piecewise cubic, i.e., a cubic spline. They must, therefore, satisfy the stan­
dard spline continuity equations. The application of this simple observation
to each of the Sk yields a remarkable factorization. Let F and T be the
N x N matrices given by Fu = I Xi - Xi 1 and T" = I x, - x; 1

1
; then

T= FCE.

Here C is a near tridiagonal N x N matrix essentially expressing the C 2

continuity of a cubic spline.
An easy consequence of this factorization is that T is positive definite on

a certain N - 2 dimensional subspace of IR N. See also [2] for more general
and related results. This latter fact will be used to show that T is non­
singular, thus showing that the set of translates, [I X ~ X k 1

1
}, lS

"unisolvent".

2. THE CUBIC SPLINE CONTINUITY EQUATIONS

Although these equations are well known we present a derivation which
we believe to be novel and somewhat more economical than the standard.
This approach can also be extended to derive possible factorizations of
matrices of higher odd powers of point distances.
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Lets be a cubic spline and .1'1' .1'2' .1', any three consecutive knots of .1'.

Then .I" is continuous and piecewise linear on [.1'1' .1',] with a possible
knot at x = .1'2' Now by the Hermite Gennochi formula, the second divided
difference of .I at .1'1' .1'2, .1', is given by

1'1 1"[ I

s[YI,!'2,Y,]=1 J s"(E(y,-r l )+u(r 2 -YI)+l'l)dudl.
'0 0

But s"(I(Y'-YI)+u(Y2-v l )+r l ) is piecewise linear in (I.u) with knot
line given by

that is

a straight line passing through the points (0, I) and (1*,0) where 1* =

Cl'2 - yI!/(y, - .1'1)' (See Fig. 1)

Now for any linear p( I, u) and LJ a triangle with vertices l'l, ['2 and l'"

rr area(LJ )II p(l,u)dudl= (P(l'I)+P(P2)+P(P,)).
"'1 3

Thus, referring to Fig. 1,

= (It + It) s"(ECh - YI) + U(Y2 - .1'1) + YI) du dl

I v - v
__ . 2 ~ I 1 ."( .' ) + 2 .,,( , ) 1
- ,.\ .~ I .I J 2 J

6.h - YI

1(1 .1'2-.1'1) 1"(, 2 "( I+- - IS .1',)+ .I Yl)J'
6 Y1- YI

If we define hi = Yi + I - .V i 1 :( i:( 2, this expression simplifies to
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FICilJRE I

Now substitute the explicit expression for S[YI' Y2, Y3] and simplify to
obtain

I hI + h2 1
=~s(YJl- 217

1
17

2
S(Y2)+2h

2
S(Y3). (2.2)

We emphasize that for any spline, s, these are just the conditions which
express the continuity of s"(x) at the interior knots [1, p. 11].

3. THE FACTORIZATION OF T

For simplicity we make use of the differences h, ~ Xlt- I - x"
1~ i ~ N - 1. We apply the continuity equations (2.2) to each of the Sk(X)
at the interior knots, Xi 2~i~N-l, and obtain the (N-2)xN matrix
equations

hi
hi + h 2

h 2

0 «x l )/6
2 2

h2
h 2 + h 3

h 3 sZ(x 2 )/6
2 2

11 3
h 3 + h4

h4

2 2

0
hN_. 2 11"1 __ 2 + 11"1

hN- l
sZ(xN)/6

2 1 2
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hi +h2---
2h 22h l 2h l h2

I h2 + h,
---

2h, 2h 2 h, 2h,

2h,

o

()
2h" _2

hN 2+ 11" I

2h:>_ I h",

1

2h N I

1~ k ~ N, (3.1 )

We "square up" these equations with the following two identities.

LEMMA 3.2. For x I < X2 < ,.. < x ,v and s( x) = Ix - Xk 1\ Ihe jill/owing
hold:

and

XN-X,S"(X I ) xN-xN_,s"(xN-I) s"(x N)
2 -6-+ 2 6 +(x 1 -xv 1)-6-

1 1
= s(x I) + s(xv I)

2(x N -xtl 2(x",--x v tl

XI -X N 1+ . .I(X",).
2(x"-'-X 1 )(X N -X N ,)

(3.3 )

Proof: I t suffices to demonstrate (3.2); (3.3) will then follow by sym­
metry.

If k = 1 it is readily seen that both sides reduce to 0.5 {(.\ 2 - XI )2 +
(X N -xtl 2 l whereas for k?2 both sides equal 0.5(x\ X 2 )(X I +'2+
x v - 3xd· I

We now add identity (3.2) as the first row of (3.1 ) and (3.3) as the last
and write 5=h l +11 2 + ... +h N I' obtaining



THE MATRIX [I Xi - X j IJJ

h,
0

S
IX,-x,l-h, -5

2
0

2

h,
h, +h,

h,
0 0 lx, -x, I2 2

0
h,

h, +11,
h,

0 02 2
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o

S

2

h, -5

2h,S

o

2h,

o

o

h N ,+ h N

o

h v ,

2

h,v ,- 5

I

2S

lx, -xv I

lx, -x, I'

h, +h,
---

2h,h,
I

2h,
o o lx, -x, ['

o

o

I

21z,
h, +Iz,

----
21z,h) 21z,

2h,

o

h N ,+ h v ,

2hv _ ,hy 2h, ,

1

2S
o o

211y J

Iz" ,-5

21z" ,S
I a~ N, (3.4)

Denote the first matrix m (3.4) by C. The following lemma identifies the
second.

LEMMA 3.6. The second matrix in (3.4) is the inverse of F.

Proof This fact is verified by a straightforward calculation. We sup­
press the details. I

If we now collect the N matrix times vector equations of (3.4) we obtain
the matrix equation

and have proven:

THEOREM 3,7. T= FCF. I

CF=F1T, (3.5)



86 BOS AND SALKAUSKAS

4. THE CONDITIONAL POSITIVE DEFINITENESS OF T

Since the diagonal is strictly dominant for the N- 2 interior rows of the
matrix C, C is strictly positive definite on the subspace

V'={aElR:iV:O I =o,=Oj.

Clearly then T is strictly positive definite on the subspace V = F I V'.

LEMMA 4.1. V=F IV'={aEIR:N::L;v IO,=:L;V IO,X,=O}.

Proof: Consider U E V' and let a = FlU. Then

and

But from the formula for F I given in Lemma 3.6, it follows easily that
the N - 2 interior components of both

I
XI

J
F I 7

XiV

are zero. Since the first and lost components of U are both zero the result
follows. I

We have therefore:

THEOREM 4.2 (d. [2]). The matrix T is strictly positive definite on the
N - 2 dimensional subspace V = {a E IR: N

: :L;"'~ I {/i = L;ry~ 1aix i = O}.
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5. THE INVERTIBIUTY OF T

THEOREM 5.1. The matrix T is non-singular.
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Proof The N = 2 case is easily disposed of. By Theorem 4.2, T is strictly
positive definite on an N - 2 dimensional subspace. As T is symmetric, it is
readily seen that, counting multiplicities, T must have at least N - 2 strictly
positive eigenvalues. We claim that for N> 2, T has exactly N - 2 strictly
positive and two strictly negative eigenvalues. To see this consider T" the
upper 3 x 3 block of T. If we write

~
o a h~

T, = a 0 c ,

h (' 0

we may compute trace(T3 l=0 and det(T,l = 2ahc >0. Thus T, must have
two strictly negative eigenvalues and one strictly positive. Let E c [R3 be the
two dimensional eigenspace corresponding to the two negative eigenvalues.
Then for O/exEE, x T T3 x<0 and if we extend x to YE[RN by zeroes we
have

Thus T is strictly negative definite on a 2-dimensional subspace and must
have two strictly negative eigenvalues. The result follows. I

6. REMARKS

We point out that the analogue of Tin 2 dimensions need not be non­
singular. In fact, for the four points in the plane, ( -I, 0 l, (0, 0 l, (I, 0), and
(0, 1l, the matrix of distances cubed is

o
o

8 2}2
I

2}2
o
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with determinant 64( 1 - J2) < O. But the matrix for the points, ( -1, 0),
(0,0), (1,0), and (2,0), is

0827

o 8

8 0

27 8 o

with determinant 1188> O. There must, therefore, be points (u, v) when the
matrix for (-1,0), (0,0), (1,0), and (u, v) is singular.
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